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An analytical theory is developed to describe how negative pressure, (or ‘mud suction’, 
as it is sometimes referred to) develops underneath a body as it detaches itself from 
the ocean bottom. Biot’s quasistatic equations of poro-elasticity are used to  model the 
ocean bottom, and a general three-dimensional time-dependent analysis of the 
problem is worked out first using the boundary-layer approximation recently pro- 
posed by Mei and Foda. Then, explicit leading-order analytical solutions are presented 
for the problems of extrication of slender bodies as well as axisymmetric bodies from 
the ocean bottom. 

1. Introduction 
The extrication of objects (e.g. sunken vessels, construction caissons) from the ocean 

bottom is a problem whose importance in ocean and offshore engineering has only 
recently been realized, as a result of the growing engineering activities in the offshore 
region. It is the task of salvage engineers to develop efficient and successful techniques 
for carrying out such extrication. It is well known (Liu 1969) that actual salvage 
operations may last several days in trials, and that sometimes the object never even 
breaks out at all owing to the engineers’ lack of understanding of the ‘breakout’ 
phenomenon. The phenomenon is also important for the design and operation of 
submersibles in the ocean. For example, a submersible design engineer would be 
interested in knowing the minimum propulsion power required for the submersible to 
break loose from the bottom mud after resting on it for a period of time. Indeed, aa in 
the problem of detachment of two plates initially in contact at one of their plane 
surfaces, the required release force might be very large (infinite in the limiting case of 
two rigid impervious plates with no initial gap between them). The releme force in 
excess of the submerged weight of the object ia usually called the ‘breakout force’ 
and sometimes referred to as the ‘mud suction’. From salvage experience, it is known 
that, beside the magnitude of the breakout force, the length of time this force has to be 
applied is of equal importance, i.e. the phenomenon is time-dependent. In  order to 
achieve complete detachment of the object from the soil, the pulling force has to be 
applied for a certain period of time called the ‘ breakout time’. Reliable estimates of 
the breakout force and time are only possible after one understands the mechanism of 
the breakout phenomenon, and consequently defines a criterion for the breakout time. 

t Present adclress: E. C% E.S. Division, Kuwait Institute for Scientific Research, P.O. Box 
no. 24885, Safat, Kuwait. 
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Obtaining such estimates would eliminate the loss of time and equipment during actual 
lifting operations. Moreover, reliable estimates become essential in submarine rescue 
missions where the breakout time is limited by the submarine emergency life-support 
capacity, and a corresponding breakout force should be estimated before the rescue 
mission is launched to ensure that the force is within the capacity of the surface ship. 

Very little knowledge concerning the breakout phenomenon can be found in the 
literature and only traces of salvage experience are recorded occasionally in ships’ 
logs. Unpublished preliminary laboratory studies of the breakout phenomenon were 
conducted by Harleman (1963, personal communication). A few other experimental 
studies in the field and in the laboratory were also conducted in the late nineteen 
sixties (see e.g. Liu 1969; Muga 1968; DeHart & Ursell 1967) in order to obtain some 
empirical knowledge of the breakout force-time relation. However, the data obtained 
were so limited and so scattered that none of these studies permitted the making of any 
affirmative conclusion from them. Only some guidelines can be drawn based on these 
investigations. An important one is the observation in all experiments that the 
characteristics of the porous soil (e.g. soil permeability and soil firmness) affect the 
breakout process significantly. Therefore, analysis of the problem should account 
adequately for the response of the saturated porous ground. 

Biot ( 194 1) presented a three-dimensional consolidation theory for fluid-filled 
porous media which takes into account the deformation of the porous solid and the 
flow of the pore fluid in a physically consistent way. In  the present paper, Biot’s theory 
will be employed to model the ocean bottom. The basic assumptions involved are that 
the soil solid skeleton is linearly elastic and that the pore fluid obeys Darcy’s law. 
However, since the governing equations of Biot couple the pore pressure with the solid 
displacements, the mathematical treatment of these equations is very difficult, and 
indeed there are very few exact solutions to Biot’s equations in the literature (see 
Yamamoto et al. 1978; Verruijt 1969). Therefore, a boundary-layer approximation 
recently worked out by Mei & Foda (1980,1981) will be used to obtain an approximate 
‘small-time’ solution to Biot’s equations. It will be shown that, for a wide range of 
physical parameters, the breakout phenomenon is well within the range of the small- 
time boundary-layer formulation. A general time-dependent three-dimensional 
analysis of the problem will be worked out fist, then explicit analytical solutions will 
be presented for the problems of extrication of slender bodies as well as axisymmetric 
bodies from the ocean bottom. 

2. Formulation of the problem 
Cartesian co-ordinates (x1,xz,x3) will be used, with the x, axis taken positive 

upward. Let the porous bed occupy the lower half-space x3 < 0 and let a three- 
dimensional rigid body with a plane base be seated on the horizontal ocean floor 
x3 = 0, with the origin 0 of the co-ordinates conveniently located at the centroid of 
the base. Initially, the body is neutrally buoyant while its base is still touching the 
ocean floor, meaning that the pulling force acting on the body is initially equal to the 
body’s submerged weight. The entire ocean floor, including the area underneath the 
base, is therefore stress-free. The problem of interest here is to investigate what will 
happen when the body is uniformly pulled up away from the ocean floor at a velocity 
W(t )  without tilt. 



Extrication of large objects from the ocean bottom 

x3 

213 

.- 

Porous-bed surface 
\ 

/- - - -- 
' f t  t t t t t 

FIQURE 1. Definition sketch. As the gap between the body and the porous bed expands, water 
flows into the gap laterally through the gap periphery as well aa vertically from the bed's pores. 
The porous-bed upward deflection is due to the viscous drag exerted by the pore fluid flowing 
upward into the gap. 

As the body begins to move upward a tiny gap filled with water will begin to develop 
between the body and the porous free surface (figure 1) .  The governing equations will 
be statements of conservation of mass and momentum in the fluid gap as weU as in the 
saturated ground. 

First, we examine the importance of inertia in the gap and ground motions. I n  the 
gap, inertia is negligible when the Reynolds' number is very small, i.e. when 

where U, is the typical horizontal water velocity in the gap, b is the gap thickness, 
and ,u and p are respectively the water viscosity and density. As, for the ground 
response, inertia may also be neglected if the body velocity W is applied smoothly, 
so that at no time is W comparable to the phase velocity of the saturated-soil elastic 
waves. This condition can easily be met in reality, as will be seen later in the analysis. 
Therefore, it will be assumed that condition (1) holds and that inertia effects in the 
ground are negligible as well. 

Since the gap thickness A is much smaller than the horizontal dimension of the gap 
(say a),  alubrication-type approximation (Lamb 1932, p. 681), is employed to describe 
the motion there: 

where p is the excess pressure over its hydrostatic value and u, is the fluid velocity. 
The appropriate boundary conditions for (2) are as follows. 

(i) At the periphery of the gap 
p = 0. (3) 

Strictly speaking, this boundary condition should be imposed at lxll,  1x21 = co and the 
effects of fluid flow outside the gap should be considered. However, such inertia-free 
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external flow, having the small gap thickness A as its characteristic length scale, is 
expected to have a negligible effect on the pressure and is ignored here. 

(ii) At  the body-gap interface I 

u1 = u2 = 0, u3 = W(t) at x 3 - - so’ Wdt. (4% b, c) 

(iii) At the gap-porous-bed interface we shall impose the conditions that the three 
velocity components and t,he three stress components are continuous across the 
interface. The velocity-continuity condition requires that 

u$ = n u i + ( l - n ) v ;  a t  x3 = v ~ d t ,  s: 
where n is the porosity (i.e. the water per unit cross-sectional area in the saturated 
porous bed) and vi is the solid velocity in the porous bed. The superscript + means 
just above the interface, while - means just below it. 

Stress continuity requires (only excess dynamical components are considered) 

7~ Nj = ~4 I$, (6) 

where 3 is the unit normal to the bed surface, and rz and r$ are the second-order 
stress tensors below and above the interface. Above the interface, the stress tensor in 
the water is given by 

r $ =  -p+&,,+y (7) 

However, the ratios (N,,N,)/N3 are O ( A / a )  or smaller. Therefore, in order to be 
consistent with the lubrication-theory assumption ( A / a  < 1 ), we approximate the 
unit normal vector by the unit vertical vector, so that (6) becomes 

Beside conditions (8 ) ,  we further require that the water pressure is continuous across 
the interface, i.e. 

p-  = p+. ( 9) 

It is these last seven boundary conditions, (5a, b, c), (Sa,  b, c) and (9), that couple 
the motion in t,he gap with the complicated fluid-solid flow system in the ground. 

However, a compensating simplification of the problem arises from the fact that 
most soil materials have low permeabilities (see e.g. Terzaghi & Peck (1948, p. 48) for 
typical soil permeabilities, and Jaeger & Cook (1974) for rock permeabilities). Mei & 
Foda (1981) presented a boundary-layer formulation, based on Biot’s (1941, 1956) 
three-dimensional consolidation theory, which takes advantage of the low-perme- 
ability assumption. They reasoned that, since aoil of low permeability resists water flow 
relative to the soil solid matrix, i t  follows that motion characterized by sufficiently 
small time scale should have the following boundary-layer structure. Relative fluid- 
solid motion is appreciable in thin boundary layers near free surfaces, where it is much 
easierfor the fluid to squeeze into or out of the freesurface. Outside the boundary layers, 
such relative motion is highly resisted and both the fluid and the solid move together 
with essentially t,he same velocities. An approximate, leading-order solution is 
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therefore written as the sum of the outer solution plus a boundary-layer correction. 
In  the outer solution, no relative fluid-solid motion is allowed. A boundary -layer 
solution is then added to the outer solution in the region near the free surface in order 
to correct for possible relative motion there. The complete derivation of this boundary- 
layer formulation is given in Mei & Foda (1981) and will not be repeated here. For 
convenience, a brief summary of the procedure is given in the appendix. The formu- 
lations of Mei & Foda will be used here to obtain a small-time solution to the saturated 
ground response. Thus, we write the solution in the ground as the sum of the outer 
solution and the boundary-layer correction, i.e. 

( 1 = ( )”+( )b. 

The outer problem, ( )o ,  is stated as follows: 

where /3 is the bulk modulus of the pore fluid, G is the shear modulus of the solid 
matrix, and ve is the equivalent Poisson’s ratio of the composite fluid-solid system. 
The relation between ve and the actual Poisson’s ratio v of the solid matrix alone is 
given by 

v e = ’ ( L + ” )  2 1 - 2 v  nG (L+L) - l  1 - 2 v  nG ‘ 

The reason for considering the pore-fluid compressibility P-l, although it has been 
neglected for the water flow in the gap above (equation ( 2 a ) ) ,  is to account for possible 
entrapment of tiny pockets of air in the pores, which would greatly increase the 
compressibility of the water-air mixture. Therefore /3 should be considered as the 
apparent bulk modulus of the pore fluid, and is related to the bulk modulus Po of pure 
water by (Verruijt 1969) 

1 1 1 - s  - = -+-, 
P P o  Po 

where S denotes the degree of saturation and po denotes the absolute pore pressure 
(Po = 10°N/m2 while, for 99 yo saturation and po  = 1 atm, /3 reduces to 10sN/m2). 
The case of complete saturat>ion will be considered here as a special case. 

Equation (11)  simply states that the outer fluid and solid velocities are equal. 
Equation ( 1 2 )  is the conventional equilibrium equation of Cauchy. Since the fluid 
motion follows the solid motion in the outer problem, the outer pore pressure po is 
t(hereforere1ated to the solid dilatation asgiven in (13). Equation (14) is the conventional 
Hooke’s law, with G and ve replacing G and v ,  and is relating the total stress 7rj with 
solid strains. By contracting the tensor equation (14), we get a relation between the 
solid dilatation and the trace of the stress tensor 7ik, so that (13) may be rewritten as 
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On the other hand, the boundary-layer correction ( )b is given by 

aZlpb a p b  

ax: at 
K - = -  

7g3 = O(s), 7;j = O(s) (i i j ) ,  

( V t ,  u;) = O(s) (v?, u?), 

where k is the soil coefficient of permeability and a is the horizontal dimension of the 
gap. Equation (18) is Darcy’s law, which states that frictional stresses in the porous 
bed are proportional to the relative fluid-solid velocities. Equation (19) governs the 
boundary-layer correctionpb to the pore pressure. Notice that (19) is a one-dimensional 
heat-diffusion equation and clearly from this equation the boundary-layer thickness is 
of order S = (Kt)*. Therefore this boundary-layer formulation is only valid when 
6 < a, as stated in (23). Notice that 8 increases with time as ti ,  and from (19) one sees 
that the smaller the permeability coefficient k the longer the time range of validity 
of (23). For example, if the ocean sediment is a composition of fine sands, silt or clay, 
with k N 10-9-10-11m3s/kg, then the time range of validity according to (23) can be 
as long as a few hours, but it will be greatly reduced to just a few seconds if the ocean 
sediment is composed instead of highly permeable coarse sand with k 1: 10-8m3s/kg. 

3. Solution of the initial-boundary-value problem 
(a) TheJlow in the gap 

We first solve for the horizontal velocity profile in the gap between the body and the 
porous free surface by integrating (2b) in the vertical direction and invoking the 
boundary conditions (4a, b) and (5a, b) to get 

where 

Here po is the unknown excess water pressure in the gap and A is the gap thickness, 
which is in general a function of xl, x,’and t .  We now investigate the relative importance 
of the two terms on the right-hand side of (24), i.e. the relative importance of the 
horizontal fluid velocity ui a t  the porous bed surface, compared with a typical ut 
value within the gap. This can be done by a simple order-of-magnitude argument as 
follows. From (22) it is seen that t’he boundary-layer corrections to UT and vy areRmall 
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compared with the outer solution. Therefore, from the continuity conditions (5a, b)  
and Hooke’s law (14) 

(i = 1, 2)’ (26) O(uf) N - 70a 
Qt 

where T~ is the horizontal shear stress exerted on the bed aurface by the water flow in 
the gap. From (24), 70 is given by 

Substituting (27) into (26), we get 

which gives an order-of-magnitude estimate of the ratio between the two terms on the 
right-hand side of (24). A typical value of the soil shear modulus is Q ci lo7 N/ma 
(Lambe & Whitman 1.979; Jaeger & Cook 1974), p ’v lO-Skg/ms and the gap hori- 
zontal dimension a - 0(1 m). Substituting these values in (28), it is seen that ut may 
beneglectedin (24), exceptwhenA < lO-lOm, where bothuf andu,amextremelysmall 
(u$ - O(As/p)) .  Therefore we drop the u t  term from (24). Then after substitution from 
(24) we integrate the continuity equation in the vertical direction across the gap 
thickness (i.e. from g = 0 to g = A) and invoke the boundary conditions from (4c)  

(b )  Boundary-kayer solution in the ground 
The governing equation for p b  is the one-dimensional heat-diffusion equation (19), 

From (18) and (29) we have at the bed surface, underneath the body, 

We also require 

The initial condition is 
@-+O as xs+-oo. 

p b =  0 at t =o.  

(32) 

(33) 

A Laplace transform in time may be employed to solve for pb,  so we define the 

(34) 

(35) 

transformation 

jjb = JOw e-& p b  dt 

and substitute into (30) to get 
asp 
ax; 

~jj”-K- = 0. 
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The solution to (35) that satisfies (32) is 

Fb = A(s)  exp [ ( s / K ) i  
or 

Hence, using the convolution theorem, the inverse transform gives 

where g ( t )  is the inverse transform of ( K / s ) t ,  i.e. 

At the bed surface q = 0, we invoke the condit,ion (9) for the fluid pressure continuity 
and substitute from (31) to get 

where 
Po = P!+PL 

with po being the pressure in the gap, p: and p i  being respectively the outer and the 
boundary-layer parts of the solution for the pore pressure at the bed surface. 

(c )  The outer solution in the ground 

The governing equations for the outer stresses r?j and po are ( 12) and ( 17) .  Since, from 
(21), 7gi are negligible, we may impose the stress-continuity conditions (8a, b, c) on 
7;i. Furthermore, these conditions will be applied at the initial undeformed location of 
the free surface, x3 = 0, instead of the current deformed surface, with an error 
O(J: v; dtla) .  This is anticipated to be within the lubrication-theory approximation 
(A/a 1). Therefore the outer problem is stated as follows: 

(424  

Since the boundary value in (42 b)  (or the forcing at  the free surface) is still unknown, 
we proceed first to investigate some aspects of the above elastostatic problem, with 
general unspecified forcing 7gi. 

Because the problem is linear, we may decompose it into a number of simpler ones 
and then use superposition to reconstruct t,he solution. 
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(1)  We first consider the problem of general pressure stresses applied on an arbitrary 
surface area, i.e. 

with 

Substitution of the const'itutive equations (14) into the equilibrium equations yields 

Taking the divergence of (43), one gets an equation for the dilatation c: 

V%=O, c=- .  auk 

axk 

The problem may be solved formally using the two-dimensional Fourier transform in 
the horizontal plane (xl ,  z,) : 

z = JJIa emcdx, 

where x = (xl ,  xz ) ,  X = (Al, A,), the Fourier variables, and the overbar is used to denote 
the Fourier transform. The solution for E in the lower half-space is formally 

Z = Zoeba, ha = Aj+At.  (44) 

Using the boundary conditions of zero shear stresses at  the surface it <tan be shown that 

However, the Fourier transform of the vertical component of (43) gives 

which has the solution 

' 0  x3 ekza. - 
va = A(A) eAS- 2(1 - 2ve) 

Substitution of (44) and (46a) into (46) determines A: 

1 - v e  
A( 1 - 2%) Zo. 

A =  

From (14) we get the Fourier transform of 7s): 

which upon substitution from (44) and (46) gives 

8 FLM 117 
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The inverse transform of the above equation is simply 

or, expressing co in terms of the trace of the stress tensor 7!,! by contracting (la), we 
get the general and important result 

for any 7&)(x1, x2, 0, t ) .  
(2) The second problem we consider is the stress field in the semi-infinite space due 

to the viscous shear stress applied at the surface as water flows laterally into the gap. 
However, the order of magnitude of this surface shear stress 70 can be shown to be 
A/u times the dynamic pressure dress in the gap. This classical lubrication-theory 
result (see e.g. Lamb 1932, p. 583) can be seen immediately from (2 b) which essentially 
balance the vertical gradient of shear stress ( -  70/A) with the horizontal gradient of 
pressure ( N po/u) .  Therefore, dilatation due to surface shear may be neglected com- 
pared with dilatation due to surface pressure, and for this problem we take 

= 2( 1 - Y e )  7&), ~3 = 0, (47 4 

Now we return to the original problem. At the free surface 5 = 0 the outer pore 
pressure p$ is given by (17), which in view of (47u, b) reduces to 

Then, since from (2u) and (24) we have 

the third of the boundary conditions (42b) gives 

7& = -Po = - @  $ + P b  x3 = 0; (49) 

so that from (48) we get the following general result for any free-surface pressure 
loading : 

m nG 
b-- Po - l+mPo’ m = (1 - 2v)b’ 

where (15) has been used to express ve in terms of the solid-matrix Poisson’s ratio v. 
The parameter m is essentially the ratio G/B of the skeleton to the fluid elaaticity, or 
simply the stiffness ratio between the two constituents. Substituting (50) into (40), 
we finally obtain the governing equation for the pressure in the gap: 

where, after substitution from (19) for K ,  
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and where,-from (25a), 

(52) 
aA 

Equation (51) is an integro-differential equation for two unknowns po and the gap 
thickness A (or the vertical (swelling) velocity w; of the porous free surface when the 
body velocity W is prescribed). From (22) it is seen that w; is to be obtained from the 
outer elasticity problem. Therefore, the initial-boundary-value problem is reduced to 
solving (51) for the pressure underneath the ascending body, coupled with the elasto- 
static problem ((14), (42a, b)). 

4. Approximate analytical solution for the breakout force-time relation 
The coupling between (51) and the elastostatic problem in the ground is, however, 

still difficult to  deal with analytically. Even numerical manipulation seems tedious 
and quite involved, since for one thing the system is a transient coupled system. 
However, one may get rid of this coupling by solving the problem in a partially 
reverse order. First, replace A by its spatial average A@), i.e. replace (52) by its spatial 
average 

(53) _ -  - W-(vc)av, 
aA 
at 

where (va)av is the average vertical velocity of the bed surface underneath the body, 
so that f51a) becomes 

Now, one may proceed to solve (54a) for po in terms of A(t) .  The absolute velocity 
W(t) might be obtained afterwards by splving the elastostatic problem, with po  given, 
to get (v;)aV and then using (53) to get W. The solution obtained for po will, however, 
be based on neglecting the spatial variation of A (i.e. of v;) underneath the ascending 
body. Therefore it should be considered as a leading-order solution in the ‘small ’ 
parameter 

( l ~ ; - ( ~ a ) a v l / ( ~ ~ ) ~ v ) d ~ ~ i  forall t >  0, (54b)  
where 

are respectively the vertical deflection of the free surface and its spatial average over 
the base area A. The validity of such a solution will therefore be based on having u 
much less than unity during the whole process of breakout. The smallness of u is 
evident in many elasticity solutions in the literature for different finite loading areas 
(see e.g. Ahlvin & Ulery 1962; Deresiewicz 1960; Poulos & Davis 1974, p. 43) and 
different loading distributions (e.g. Pouloa & Davis 1974). For example, the tabulated 
solution reported by Ahlvin t Ulery (1962) shows u = 0-102 for uniform circular 
loading. Refinement to such a leading-order solution for p ,  will be discussed later, but 
what will be attempted now is solving this leading-order uncoupled problem; i.e. the 

a-2 
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relative deflections of the sea bed underneath the body will be ignored so that one 
may proceed to solve the integro-differential equation (54a). 

(a)  Breakout of misymmetric bodies 
As a first example, we consider the breakout of axisymmetric bodies, where the shape 
of the body base is circular with radius a. Here the polar co-ordinates (r, 8) may be 
used instead of (zl, x2)  and, since the problem is axisymmetric, the pressure po  will 
be a function of the radial co-ordinate r = (x: + xi)* but not of the angle 8 = arctan 
(xl/x2), Therefore, (54 a) reduces to 

The total pressure force Fp on the body is given by 

Notice that, beside A, the pressure gradient apo/ar at the edge of the gap (r = a)  is 
needed in order to get the total pressure force Fw Therefore, we shall investigate the 
solution for po near the edge, r II a. Expanding p ,  in a Taylor series in time, 

and, substituting into (55),  one gets 

where 

Equation (58a) is to be solved subject to the boundary condition from (3), 

po = 0 at r = a;  (59) 

we also require po to be finite for r < a. Notice first that, if only the first term in the 
Taylor expansion (57) is kept and (58a) is solved, ignoring 

etc., the solution would simply be 

where Io(fr) is the modified Bessel function of the zeroth order, with f being given by 
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Therefore, keeping all the terms in (58a), one may try the expansion 

; i a  ar (r 2) = a G f g d  I (f + [6(a-r)- (3 /r )  ( ~ - r ) ~ ]  fi(t) 
Io(foa) 

+[12(~-r)~- (4 /r )  ( a - ~ ) ~ ]  fz(t)+ ..., (62) 

where fo,fl,fz.. . are functions of time only. But, for po = 0 at r = a one must have 
from (65) 

which determines the functionf,(t) in terms of &(t). It is easy to see that the functionf, 
is different from the function f in (60). The rest of the functionafl(t),fz(t), etc. in (61) 
can be found by substituting (61), (62) and its time derivatives into (58) and equating 
coefficients of equal powers of (a - r)* (q = 1,2, . . .). It is seen then that the expansion 
(61) will provide a unique solution for all the time functionsfo(t),fc(t), and the series 
will be convergent in a region sufficiently close to the periphery of the gap. However, 
at the boundary r = a, the pressure gradient is given by 

i.e. it is independent of fl, fz, etc. Therefore, the substitution of (64) into (56), and the 
use of (a), leads to 

which finally gives the exmt solution of (56) for the total pressure force Fp(t) in terms 
of the average gap thickness &t). Note that (65) is Abd’s integral equation (see e.g. 
Carrier, Krook & Pearson 1966, p. 357) which can be inverted to  give 

This is a more useful formula when the input to the problem is the time history of the 
pulling force IE”,(t)l. 

(b) B r e a m  of two-dimensional bodies 
As a second example, we consider the breakout of a slender body, whose length is 
much longer than its beam (as is the case for most ships for example). The problem is 
therefore reduced locally to a two-dimensional one. Aligning the x, axis along the 
longitudinal axis of the body base and taking the base width in the x1 direction to be 
2a, (54a) will then reduce to 
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FIGURE 2. The gap-expansion history E ( t )  under a two-dimensional body of beam 2a = 10 m 
due to an applied pulling force IF&)] as shown in the inset. The sea bed has permeability 
coefficient k = 10-0 ma s/kg and shear modulus 0 = 10’ N/m* (srtndy soil) ; * - * , complete 
saturation, /3 = 1.9 x 10s N/m2; - , saturation slightly less than unity, /l = lo7 N/m2. 

Following the same procedure as that described above for the axisymmetric bodies, 
it is straightforward to show that the total pressure force Fp per unit length of the 
body is given similarly by 

(68) 

wheref, is still given by (63), 
12p d i i  

.Gfa = T X ,  
and C given by (58b) .  

Again, (68) is Abel’s integral equation, which when inverted gives 

(c) Discussion of results 

Many of the essential features of the breakout phenomenon can now be brought out by 
discussing the special solutions: (65) and (as), which describe how the negative pressure 
or suction force Fp(t) develops underneath axisymmetric and slender bodies respec- 
tively &g they detach themselves from the sea bottom; and (66) and (69), which describe 
how the gap n(t) underneath the body expands with time owing to the prescribed 
pulling force I Fp(t) I. These solutions are only applicable within the time limit imposed 
by (23), and are based on ignoring inertia effects and the horizontal variation of the 
bed-surface deformation under the ascending body. The limitations imposed on the 
theory because of these assumptions will be discussed here as well. 
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FIGURE 3. The breakout force-time relations Fm(t&,) for a two-dimensional body of beam 
2a = 10 m for two different soil-permeability coefficients k = 10-B and 10-10 m* a/kg, with c f  
fixed at lo7 N/ma. . - -, complete eaturation, /? = 1.9 x loB N/ma; -, saturation slightly lees 
than unity, ~9 = lo7 N/m*. 

Figure 2 shows the results of the numerical integration of (60) for &(t) under a two- 
dimensional body of constant beam 2a = 10 m with the model pulling-force history 

which gives for the right-hand side of (69)  

and where F m  is the maximum constant value of the pulling force attained asymptotic- 
ally as t + m .  A sketch of this model force history is shown in the inset of figure 2. 
Figure 2 shows &t) for different values of Fm and selected soil parameters. The 
interesting feature in all the curves is that A remains small ( G m) for most of the 
pull-up process and then there is a rather sharp increase in the rate of expansion 
dA/dt+m until the curve becomes vertical at the ‘breakout time’ tb. This feature of 
sharp increase in the rate of expansion, as if the soil has suddenly lost its holding 
strength to  the ascending body, has been noticed and reported repeatedly in many field 
and laboratory experiments (e.g. Liu 1969). Examining (63),  it isseen that, as t + m ,  
f o + O  so that in (69) tanh (foa)/foa+ 1 ,  corresponding to large dA/dt.  Therefore, the 
condition 

foa < 1 ,  (72) 

may be considered as the criterion that defines the breakout time tb. Notice from (66) 
that this criterion applies as well in the case of axisymmetric bodies. Each A(t)  curve 
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in figure 2 corresponds to a specific pair of breakout force, defined here as Fm, and 
breakout time tb, and hence a point on the desired breakout force-time relationships. 
Some of these relationships are shown in figure 3 for selected soil parameters (soil 
permeability k, soil firmness G and pore-fluid bulk modulus /3). In all the calculations 
carried out here Poisson’s ratio v and porosity n are kept constant and equal to Q and 
0.3 respectively. Figure 3 shows the results Fm(tb) for two different soil properties 
under the same slender body of beam 2a = 10m. One is for sandy soil with G = 
l o 7  N/m2 and k = iO-gm3 s/kg, and the other is for soil of fine-sand-silt mixture with 
G = 107N/m2 and k = 10-lOm*s/kg. The results are shown for the case of complete 
pore-saturation (/3 = Po = 1-9 x i09N/m2) (broken lines), as well as for partial 
saturation (j3 = i07N/m2) (solid lines). All four breakout force-time relations that 
are plotted on a log-log scale in figure 3 show approximately the same functional 
dependence 

F m  = AtbB, (73) 

with the exponent B having an approximately constant value equal to 0.7. These 
relations are limited in extent at  both ends because of the theory’s limiting assumptions 
(shown in the figure by dotted extensions of the lines). Near the longer-breakout-time 
end t,he limiting factor is the increase of the non-dimensional time scale T, from (23) 

and hence the breakdown of the boundary-layer formulation. An important point to 
notice, however, is that, although the breakout time tb reaches an hour or longer, the 
non-dimensional time T remains smaller than unity for a wide range of parameters 
satisfying (74) and in accordance with the short-time boundary-layer formulation. 
Near the shorter-breakout-time end, the limiting factor is the increase of Reynolds 
number defined by (1). The largest Reynolds numbers will occur right at the gap edge, 
where the horizontal velocities are maximum. Use of (24) and (64) shows that condition 
(1) is satisfied throughout the breakout process (except of course at the very late 
stages near tb, where A ( t )  is near vertical) for a wide range of Fm values. The inertia 
effects on the other hand will affect the results at the later stages, especially for larger 
F m ,  by acting to resist the water inflow to the gap from the sides, and hence somewhat 
delaying the breakout time from the present inertia-free calculations. There is also 
another limit to the results that was pointed out by one of this paper’s referees, namely 
when the water goes into pure tension. This would impose a limit on the higher breakout 
forces Fm, especially in shallow water. From figure 3 it is also seen that, for agiven 
breakout force, the breakout time increases with decreasing permeability as may be 
anticipated intuitively. There is also a significant reduction in the breakout time for 
a given breakout force when the pore saturation ratio is reduced slightly below unity 
(thus reducing the bulk modulus /3 to 1 O7 N/m2). 

It is furthermore interesting to study the case when A(t) is given as an input to the 
problem, i.e. to solve (65) or (68) for the development of F!(t)  due to a prescribed A@). 
Figure 4 shows sample results for the pressure-force history F,(t) under an axi- 
symmetric body of base radius a = l m and for selected soil parameters, wit,h the 
model gap-expansion function 

A = yt, (75) 
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FIGURE 4. Negative-pressure-force history FJt) developed undepeath an axisymmetric body of 
base radius a = 1 m ae it detaches itself €rom a sea bottom of permeability k = 10-lo ma s/kg 
(he-sand-silt mixture) and pore-fluid bulk modulus /9 = lo6 N/m* (saturation slightly below 
unity). -, shear modulus a! = lo7 N/ma; - - -, G = 106 N/ma. Labels denote gap-expansion 
rate y in m/s. 

where y is the constant rate of expansion for this linear model. Substituting (75 )  into 
(58b) and (63) ,  we get (for either the axisymmetric or the two-dimensional case) 

Notice also that!,+ 0 as t + m  and the condition ( 7 2 )  corresponds to the asymptotic 
vanishing of the integrand in either (65)  or (68).  Each curve in figure 4 corresponds to a 
different expansion velocity y. Although the breakout mechanism can be explained 
from figure 2 for &(t), figure 4 helps more in understanding the details of this mechanism. 
The general behaviour of the Fp(t) curves in figure 4 is seen to be first an initial build-up, 
from zero initial value, of negative pressure force; proportional to t* where the first 
term in the integrand in (55) dominates over the second one. This means that during 
this initial stage most of the water supply to the gap is coming vertically from the 
underlying porous bed, with very little horizontal water influx from the gap periphery. 
The increasing difference between the pressure in the gap and the ambient water, 
along with the increasing gap thickness, will then force more water to flow into the 
gap through its perimeter and hence reduce the amount of water pumped out of the 
porous bed. This relieving action manifests itselfin figure 4 by the subsequent levelling- 
off of the FJt) curves until they reach a maximum IFPI = 3,. Further increase in the 
gap thickness will then result in a decay in Fp. Along the descending limbs of the Fp(t) 
curveB, it is the second term in the integrand in (55) which dominates the first one, 
meaning that most of the water supply into the gap is now derived by the horizontal 
pressure gradient in the gap and.coming from the sides with diminishing supply from 
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the ground. Again the interesting feature in all the curves in figure 4 is that the decay 
rate on the descending limb is not uniform. Instead, there is a distinct interval on the 
curve where it experiences a sharp and a rather sudden increase in the decay rate 
(e.g. from Fp N t-0.6 tci FP N P6), and hence a sudden drop in the soil ‘holding strength’ 
against the body breakout. This interval always corresponds to smallf,a (!,a 21 0.002- 
0.004) in accordance with condition (72) and corresponding to ‘breakout’ conditions. 

One may recall here that in all the situations conaidered in this paper the object is 
pulled up uniformly without any tilt. It is expected that, if a finite tilt e(t) is added to 
the uniform body velocity W(t ) ,  the developed negative pressure in the gap will be 
redistributed over the horizontal gap area in order to provide for the deviation of 
the gap thickness from that in the case of uniform pull-up. Furthermore, the eupply of 
water flowing through the peripheq of the gap, which represents the relieving action 
responsible for the body breakout, will not be uniform along the periphery. This 
means that ‘local breakout conditions’ might be reached over a certain portion of the 
gap area, while the rest is still attached. The region of local breakout will then propa- 
gate with time (in a similar way to crack propagation in solids for example) until 
covering the whole area, corresponding to total breakout. One might expect that such 
non-uniform breakout would be somewhat faster than the uniform ‘without tilt’ 
breakout case. Investigation of this point is being pursued further at the present. 

One final remark concerns the effect of neglecting the horizontal variation of the bed- 
surface deformation under the ascending body. An improvement may be attempted 
by using the solution obtained for p ,  (cf. (61)) and solving the outer elasticity prob- 
lem to find the surface deformation, which in turn can be used to get an improved 
solution for (51). This may be repeated several times to improve on the accuracy of 
the results. This iterative scheme seems a lot easier to handle than solving the coupled 
equations. 

The present theory, although it involves a number of assumptions, is shown to be 
applicable within a wide range of the relevant physical parameters and is also shown 
to capture the essential features of the breakout phenomenon. In particular, it shows 
the important dependence of the breakout process on the soil permeability k and the 
soil firmness G. It also shows the effect of the pore-fluid compressibility, which is 
greatly affected by the presence of tiny air bubbles, due in part to organic processes 
in the sea bottom. Moreover, it reproduces the important feature commonly observed 
in salvage operations and laboratory experiments of the rather sharp drop in the 
ocean-sediment holding strength when reaching the breakout time. 

The author is indebted to Professor C. C. Mei of M.I.T. for the many valuable 
discussions that helped tremendously in bringing this paper into its present form. 
In particular, the idea of inverting (65) and (68) into (66) and (69) respectively, should 
be credited to him. The author wishes also to thank Professor D. R. F. Harleman of 
M.1 .T. who suggested the problem, and whose experimental data actually motivated 
this study. 
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Appendix. Reduction of Biot’s quasistatic consolidation theory to the 
boundary-layer formulation 

Terzaghi’s one-dimensional soil consolidation theory wm extended by Biot ( 1941) 
to three dimensions. In  Biot (1941)) hereinafter referred to as B41, inertia effects are 
neglected and the governing equations for the two-phase soil system are given in the 
notation of this paper by: 

(i) stress equilibrium conditions ((1.2) in B 41) 

_. a7U = 0 ;  
axj 

(ii) Darcy’s law (from (4.2) and (4.3) in B 41) 

(iii) continuity ((2.12) in B 41) 

(iv) stress-strain constitutive equations ((2.1 1) in B 41) 

Now, assuming that the solid grains are incompressible, i.e., the solid-grain density 
ps = constant, it can be shown (Eiot & Willis 1957) that the material constants & 
and 4) are given by 

& =  I, Q = $ / n .  (A 5 )  

From the constitutive equations (A, 4)) dimensional arguments show that the 
velocities 

where Pis a characteristic stress, i.e. T,,, p - O(P) and a is the body size. Substituting 
these orders of magnitude into Darcy’s law (A 2)) it is seen that the leading-order 
balance of momentum gives 

Thus, for 

Gkt 
u,-v, - 0 (--&). 

Gkt - 4 1, as 

which is essentially condition (23), we have, to leading order, 

u, = v,. (A 9) 

Substituting (A 9) into the continuity equation (A 3), (13) follows. Substituting (13) 
into the constitutive equation (A 4)’ (14) follows directly. Now, near the free surface, 
appreciable fluid motion relative to the solid can take place, and hence (A 9) and the 
implied approximation above break down in a thin boundary layer of thickness 8 
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near the free surface. Moreover, following the above approximation, the problem is 
essentially reduced to a conventional elastostatic problem (the outer problem), which 
is of lower order than Biot's original equations. Hence, it cannot, in general, satisfy 
all the prescribed boundary conditions of the original problem. A boundary-layer 
correction should therefore be added near the boundaries in order to satisfy the 
remaining boundary conditions. This implies that the boundary-layer correction and 
the outer solution will be, in general, of the same order of magnitude near the 
boundaries. 

In  the boundary-layer solution, 8 should be the characteristic length scale in the 
vertical direction x, instead of a. This immediately implies from the equilibrium 
equations (A 1) that 

Tt, = 0, 

to leading order. On the other hand, substituting (A 4) into (A 1) yields, in vector 
notation 

G (V2vb+- 1 
1-2v 

Taking the curl of (A 1 l),  one easily gets 
a 

V2(V xvb) N - (V x V )  = 0. 
ax; 

The last step is because az( )b/ax; B a2( )"ax;, az( )b/ax;. However, since V X V ~  

vanishes identically outside the boundary layer Ix31 8, it must be zero throughout, 
i.e. 

V x v b =  0. 

Thus, the boundary-layer correction of the solid velocity is irrotational, which in turn 
implies that the horizontal velocities are much less than the vertical 

V?/V2 = 0(6/a)  (i = 1,2). (A 14) 

Using this fact, the dominant part of (A 11) becomes 

(i = 1,2), (A 15a) 

= 0. (A 15 b )  

Substituting the continuity equation (A 3) into Darcy's law (A 2), one gets for the 
boundary-layer correction 

The dominant part of (A 16) is 

Integrating (A 15b) in x,, then substituting into (A 17), one gets Terzaghi's equation 
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Clearly from the above equation, the scale of the boundary-layer thickness is 

Furthermore, since O@b) = P, (A 15 b) implies 

vg = o($), 

which is small as compared to  outer vertical velocities (cf. (A 6)). The horizontal 
velocities vt  and vt are even smaller, from (A 14). From Darcy’s law (A 2), it is seen 
that using these boundary-layer scales, all terms in (A 2) are of the mme orders of 
magnitude in all directions. In particular, water-velocity components are of the same 
order as the solid-velocity components, 

Pa 82 (A 21a) 

(A 21 b)  
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